Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Luiz Everson da Silva, ${ }^{\text {a,b }}$ Antonio Carlos Joussef, ${ }^{\text {a }}$ Carla Regina AndrighettiFröhner, ${ }^{\text {a }}$ Cláudia Maria Oliviera Simões ${ }^{\text {c }}$ and Adailton José Bortoluzzi ${ }^{\text {a* }}$

${ }^{\text {a }}$ Departamento de Química-UFSC, 88040-900 Florianópolis, SC, Brazil, ${ }^{\mathbf{b}}$ Clemens-SchöpfInstitut für Organische Chemie und Biochemie, Technische Universität Darmstadt,
Petersenstrasse 22, D-64287 Darmstadt, Germany, and ${ }^{\text {c }}$ Departamento de Ciências Farmacêuticas-UFSC, 88040-900 Florianópolis, SC, Brazil

Correspondence e-mail:
luiz_everson@yahoo.de

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.042$
$w R$ factor $=0.125$
Data-to-parameter ratio $=13.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2,2-Dimethyl-5-[(4-methylthiazol-2-ylamino)-methylene]-1,3-dioxane-4,6-dione

In the title compound, $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$, the thiazole ring is nearly planar. The 1,3-dioxane-4,6-dione ring exhibits a half-chair conformation. The NH group forms an intramolecular contact to a carbonyl O atom, forming a six-membered ring, and an intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, with an $\mathrm{H} \cdots \mathrm{O}$ distance of $2.16 \AA$, is also observed.

Comment

Thiazoles constitute an important class of heterocyclic compounds for which pharmalogical properties have been reported (Krasovsky et al., 2002). 5-Arylaminemethylene Meldrum's acid analogs play an important role in heterocyclic chemistry as pivotal intermediates in the formation of cyclic products (Chen, 1991). As part of a continuing study of the conformation in the solid state of 5-aminomethylene Meldrum's acid derivatives (Joussef et al., 2005a,b; da Silva et al., 2005a,b, 2006), we report an X-ray crystallographic study of the title compound, (I).

(I)

In (I), the 1,3-dioxane-4,6-dione ring exhibits a half-chair conformation. The dihedral angle $\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$ is $174.5(2)^{\circ}$ and the distances $\mathrm{N} 1-\mathrm{C} 11$ and $\mathrm{C} 2-\mathrm{C} 3$ indicate delocalization of the conjugated system. The amino H atom has an intramolecular contact to O 1 , with an $\mathrm{H} \cdots \mathrm{O}$ distance of $2.24 \AA$, forming a six-membered ring. The delocalization of the N -atom lone pair into the Meldrum's acid ring may be favoured in the direction of one of the two carbonyl groups (Blake et al., 2003). Details of the hydrogen bonding are given in Table 1.
Figure 1

01

The molecular structure of (I), with the atom labeling and displacement ellipsoids drawn at the 50% probability level.

Received 13 February 2006 Accepted 18 February 2006

Experimental

The title compound was prepared according to a literature procedure (Cassis et al., 1985) and was recrystallized from methanol (m.p.: 468470 K).

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$	$D_{x}=1.467 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=268.29$	Mo $K \alpha$ radiation
Monoclinic, $P 2_{\downarrow} / c$	Cell parameters from 25
$a=5.6384(6) \AA$	reflections
$b=18.562(4) \AA$	$\theta=9.0-18.1^{\circ}$
$c=11.920(2) \AA$	$\mu=0.28 \mathrm{~mm}^{-1}$
$\beta=103.14(1)^{\circ}$	$T=293(2) \mathrm{K}$
$V=1214.9(3) \AA^{\circ}$	Irregular block, yellow
$Z=4$	$0.36 \times 0.26 \times 0.23 \mathrm{~mm}$

Data collection

> Enraf-Nonius CAD-4 \quad diffractometer $\omega-2 \theta$ scans
> Absorption correction: none 2249 measured reflections 2144 independent reflections 1590 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.024$

Refinement

Refinement on F^{2}

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0636 P)^{2}\right. \\
\quad+0.5695 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.33 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.30 \mathrm{e}^{-3}
\end{gathered}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.125$
$S=1.04$
2144 reflections
163 parameters
H -atom parameters constrained

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1 $\cdots \mathrm{O} 1$	0.91	2.24	$2.836(3)$	123
N1-H1 ${ }^{\mathrm{i}}$	O^{H}	0.91	2.16	$2.996(3)$

Symmetry code: (i) $-x+2,-y+1,-z+2$.
All H atoms were positioned with idealized geometry and were refined with isotropic displacement parameters (set to 1.2 times $U_{\text {eq }}$ of the parent atom, 1.5 for methyl groups) using a riding model with $\mathrm{N}-\mathrm{H}=0.91 \AA, \mathrm{C}-\mathrm{H}=0.93 \AA$ (aromatic), $0.96 \AA$ (methyl).

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1993); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \&

Figure 2
Molecular packing of (I), with hydrogen bonds shown as dashed lines.

Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

The authors thank Sabine Foro, TU-Darmstadt, Germany, for her help and advice.

References

Blake, A. J., McNab, H. \& Withell, K. (2003). Acta Cryst. E59, o841-o842. Cassis, R., Tapia, R. \& Valderrama, J. A. (1985). Synth. Commun. 15, 125-129. Chen, B. C. (1991). Heterocycles, 32, 529-597.
Enraf-Nonius (1993). CAD-4 EXPRESS. Version 1.2. Enraf-Nonius, Delft, The Netherlands.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Joussef, A. C., da Silva, L. E., Bortoluzzi, A. J. \& Foro, S. (2005a). Acta Cryst. E61, o2642-o2643.
Joussef, A. C., da Silva, L. E., Bortoluzzi, A. J. \& Foro, S. (2005b). Acta Cryst. E61, o2873-o2874.
Krasovsky, A. L. Moiseev, A. M., Nenajdenko, V. G. \& Balenkova, E. S. (2002). Chem. Heterocycl. Compds, 38, 231-237.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Silva, L. E. da, Joussef, A. C., Foro, S., Schmidt, B. (2006). Acta Cryst. E62, o742-743.
Silva, L. E. da, Joussef, A. C., Nunes, R. J., Andrighetti-Fröhner, C. R. \& Bortoluzzi, A. J. (2005a). Acta Cryst. E61, o4121-4122.
Silva, L. E. da, Joussef, A. C., Nunes, R. J., Andrighetti-Fröhner, C. R. \& Bortoluzzi, A. J. (2005b). Acta Cryst. E61, o4252-4253.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: © 2006 International Union of Crystallography All rights reserved

